
Percolation model for brittle-tough 
transition in nylon/rubber blends 

Alia Margolina* and Souheng Wut 
E. I. du Pont de Nemours and Company, Central Research and Development Department, 
Experimental Station, Wilmington, Delaware 19898, USA 
(Received 14 October 1987; revised 16 June 1988; accepted 23 June 1988) 

It is proposed that the brittle-tough transition in nylon/rubber blends occurs when the yielding process 
propagates through thin matrix ligaments in which a plane-strain to plane-stress transition takes place. This 
propagation process is modelled as a percolation phenomenon. The model explains the observed brittle-- 
tough transition, and predicts that monodisperse and asymmetric particles are more effective in toughening 
than polydisperse and spherical ones. 
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INTRODUCTION 

A key observation in rubber toughening of pseudo-ductile 
polymers was recently made, namely that a sharp brittle- 
tough transition occurs at a critical rubber particle size 1'2, 
shown in Figure 1 for nylon/rubber blends. The critical 
particle size was related to the rubber volume fraction ~br 
by I : 

dc = zJ[(Tr/64Q '/a - 1] (1) 

where dc is the critical rubber particle diameter, and z~ the 
critical surface-to-surface interparticle distance, or the 
critical matrix-ligament thickness 2, shown in Figure 2. 
The value of z¢ is independent of particle size and rubber 
volume fraction, and is a characteristic property of the 
matrix at a given mode, rate and temperature of 
deformation ~. It is the single matrix parameter that 
determines the onset of brittle-tough transition in 
polymer/rubber blends with pseudo-ductile matrices 1. 
Recently, Borggreve and coworkers a confirmed this 
concept, and reported the dependence of ~c on 
temperature in nylon/rubber blends (see Note added in 
proof). 

The term 'surface-to-surface interparticle distance' 
tends to focus our attention on rubber particles. 
However, the main mechanism of energy dissipation in 
polymer/rubber blends with pseudo-ductile matrices is 
the yielding of the matrix 4. To focus our attention 
properly on the locus of energy dissipation, the surface- 
to-surface interparticle distance was renamed the matrix- 
ligament thickness 2. Figure 3 shows that a matrix 
ligament is defined as the region of the matrix between 
two neighbouring rubber particles. Thus, the condition 
for brittle--tough transition is that the average matrix- 
ligament thickness must be smaller than the critical value, 
"CC. 

MECHANISM 

During impact fracture, rubber particles cavitate to 
relieve the triaxial dilative stress 2. This tends to induce a 
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plane-strain to plane-stress transition, leading to shear 
yielding in those ligaments which are thinner than the 
critical value t'2. Cavitation is, however, not always 
required. The dispersed phase (rubber) needs only to have 
a lower modulus than the matrix for the dilative stress to 
he relieved and the yielding of thin ligaments to occur 2. 

There is a distribution of thick (z > zc) and thin (z < zc) 
matrix ligaments. During fracture, thin ligaments may 
yield, while thick ones may not. However, if the thick 
ligaments are surrounded by enough thin ones, the 
yielding of thin ones could also relieve the dilative stress 
and cause the thick ones to yield. When yielding thus 
propagates and pervades over the entire deformation 
zone, a tough behaviour is obtained. Thus, we may 
formulate the propagation of yielding process as the 
percolation (i.e. connectivity) of thin ligaments. 

At the percolation threshold (i.e. the formation of the 
first percolation path), many thick ligaments may not be 
surrounded by sufficient numbers of thin ligaments, and 
so cannot yield. In this case, crazing will be favoured over 
yielding, and a brittle behaviour will be observed. For  
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Figure l Notched Izod impact strength v e r s u s  rubber particle size at 
constant rubber volume fractions for nylon/rubber blends: curve A, 
~br=0.128; curve B, ~br=0.189; curve C, ~br =0.306. Filled symbols are 
for tough specimens. Open symbols are for brittle ones. After Wu 1 
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Figure 2 Notched Izod impact strength v e r s u s  matrix-ligament 
thickness for nylon/rubber blends: curve A, ~br=0.128; curve B, q~r = 
0.189; curve C, ~br=0.306. Filled symbols are for tough specimens. 
Open symbols are brittle ones. After Wu 1 

Figure 3 Schematics of rubber particles and matrix ligament 

tough behaviour to occur, therefore, a certain level of 
multiple connectivity of thin ligaments must be attained. 
This is an important feature of the toughness problem, as 
opposed to the 'first-path' percolation treated in 
transport problems 5. 

The exact level of multiple connectivity required is not 
known at this time. However, the connectivity is known 
to increase rapidly beyond the percolation threshold. 
Thus, the onset of tough behaviour will be only slightly 
different from the 'first-path' percolation threshold. In 
other words, the onset of observed tough behaviour may 
not exactly coincide with the 'first-path' percolation 
threshold. There is a small difference between the two. 
This small difference arises from the mechanical nature of 
fracture processes, which is recognized throughout this 
work, and does not detract from our analysis. Thus, 
we propose that the onset of brittle-tough transition 
occurs near the percolation threshold of thin ligaments. 
If, on the other hand, the percolation of thin ligaments 
cannot occur, fracture will proceed mainly by crazing, 
resulting in brittle behaviour. 

PERCOLATION MODEL 

Consider equal-sized rubber particles occupying a 
random lattice. The lattice sites can be linked with bonds 
to form tetrahedra so that the circumsphere of a 
tetrahedron contains no other sites. This can be done in 
such a way that the tetrahedra fill the space without 
o v e r l a p  6. Each bond has length L = d + ~. For the present 
purpose, it suffices to define the matrix ligament as the 
region of the matrix enclosing a lattice bond, and the 
matrix ligaments fill the matrix space. Thus, each matrix 
ligament is associated with one and only one lattice bond. 
The thickness of a matrix ligament z is the part of the 

bond length between the surfaces of two neighbouring 
rubber particles (Figure 3). 

Tough behaviour occurs when thin ligaments (z <zo) 
are interconnected, allowing the yielding process to 
propagate and pervade over the entire matrix in the 
deformation zone. This corresponds to the phenomenon 
of bond percolation in the random lattice, which has b e e n  
shown to be equivalent to continuum percolation of 
spheres 7. As in customary use, the percolation threshold 
refers to the onset of the 'first-path' connectivity, which 
is, however, slightly below the actual onset of tough 
behaviour, as discussed before. This should be 
understood throughout this work. For simplicity, 
however, we shall not always specifically make such a 
distinction. 

Our problem is thus recast as the percolation of 
spherical 'stress volumes' in the random lattice. Each 
stress volume centres at a rubber particle and includes a 
concentric annular shell of the matrix of constant 
thickness zc/2, which is the critical ligament thickness, as 
defined before. Namely, the diameter of the stress volume 
is: 

S=d+,c (2) 

where S is the diameter of a stress volume, shown in 
Figure 4. Two neighbouring stress volumes are 
considered to be connected when L<S. At the 
percolation threshold, we have: 

S~=dc+z~ (3) 

where the subscript 'c' denotes the critical condition. 
During tough fracture, the stress volumes will yield and 
propagate. However, in brittle fracture, crazing is 
favoured over yielding. Thus, the stress volumes will not 
yield, and the fracture will proceed mainly by crazing. 

Continuum percolation of stress volumes will occur 
when the volume fraction of stress volumes (~bs) is at its 
critical value (~b~). Since ~br,~d 3 and ~s,-~S 3, we obtain 
the critical condition for brittle-tough transition as: 

C~rc(Sc/dc) a = q~ (4) 

where ~b,c is the rubber volume fraction at the critical 
condition. 

At high rubber volume fractions, stress volumes tend to 
overlap. Therefore, the percolation threshold ~ tends to 
vary with diS rapidly at high rubber fractions. The ~b~ 
values as a function of d/S have been numerically 
simulated for the case of monodisperse (equal-sized) 
spheres in a random lattice a'9. It was found that ~b= is 
roughly constant (,-,0.36) for d/S<0.8, and increases 
rapidly to the limiting value for random close packing 
(0.65) at d/S= I (ref. 8); see also Figure 5, and further 
discussions later. 

It is interesting to note that (1) may be rearranged to 

d S = d  ÷ "C c 

Figure 4 Schematics of stress volume around a rubber particle. The 
rubber particle is shaded 
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Figure 5 Percolation threshold ~bsc versus d/S: curve A, this work for 
polydisperse particles; curve B, theoretical curve for monodisperse 
particles by Bug and coworkers s 

the form of (4), giving: 

c~,~(L¢/dc) 3 = r~/6 (5) 

where L is the average random-lattice constant, defined as 
n3L = 1 with n being the number density of lattice sites 
and L~ being its critical value. For equal-sized spheres, 
~b~-~0.36 (ref. 8), and for the polydisperse nylon/rubber 
blends of this work to be discussed below, ~b~ ___ 0.42, as 
compared with n/6 from equation (5). 

APPLICATION 

We apply the percolation model to analyse the impact 
toughness of nylon-6,6/rubber blends. Experimental 
data for impact toughness (notched Izod, ASTM D-256) 
at various rubber particle sizes and volume fractions have 
been reported in detail dsewhere 1. In this system 1, it was 
found that z¢=0.30#m, shown in Figure 2. This value is 
used in (4) to calculate the values of ~ as a function of 
diS. The results are plotted in Figure 5, together with the 
theoretical curve of Bug and coworkers a for the case of 
monodisperse spheres. 

It is satisfying to find that the brittle-tough threshold 
~ versus d/S curve for the present system is similar to the 
theoretical percolation threshold curve for monodisperse 
spheres. At high rubber volume fractions (dis > ~0.9), 
the two curves coincide with each other. In other regions, 
the ~ values for the present system (~0.42 for 
diS < ~0.8) are shifted to somewhat higher values than 
those for monodisperse spheres (~  0.36 for dis < ~ 0.8). 
This difference may be due to (1) the disparity between the 
thresholds for brittle-tough transition and 'first-path' 
percolation as mentioned before, (2) particle-size 
polydispersity and (3) particle-shape asymmetry, 
discussed below. 

The particles in the present system have polydisperse 
sizes, conforming to log-normal distributions with 
polydispersity (i.e. geometric-mean standard deviation 
a~) of 1.4 to 2 (refs 1, 2). The average matrix-ligament 
thickness increases significantly with increasing size 
polydispersity 2. For the present system, ag is typically 1.7 
(ref. 2), and so the average matrix-ligament thickness is 

about 50 % greater than for the monodisperse case at the 
same average size and volume fraction 2. Thus, we expect 
qb, to be greater for the polydisperse case than for the 
monodisperse one 1°. This appears to account for the 
main difference. 

On the other hand, it is known that percolation 
threshold depends on particle shape, i.e. decreasing with 
increasing aspect ratio 11. In other words, asymmetrical 
particles have lower threshold values, and thus should be 
more effective than spherical ones in toughening. 
However, in the present system, the particles are 
spheroidal with aspect ratios of only about 1.1 (ref. 1). 
Therefore, we expect the shape effect to be small. 

If the brittle-tough transition is a percolation 
phenomenon, we further expect a scaling law above the 
percolation threshold ~b,: 

~ (~s - ~ ) 0  (6) 

where G is the toughness, g the critical exponent and ~bs 
the stress volume fraction: 

~)s = cPr(S/d) 3 = t~r[(d + %)/d]  3 (7) 

This provides a critical test to see if the brittle-tough 
transition is indeed a percolation phenomenon. 

Figure 6 plots log G versus log(~b s - q~¢) for the present 
system. Tough data are plotted as open squares; brittle 
data as open circles. The fracture mechanisms in 
tough (yielding) and brittle (crazing) behaviours are 
different. The brittle data plotted herein are in the region 
above the 'first-path' percolation threshold, but are below 
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Figure 6 Log G versus log((~s-~sc) for nylon/rubber blends, showing 
g=0.45+0.06. Open squares arc the data in the tough region. Filled 
squares are the estimated 'tough" strength in the brittle region. Open 
circles are the brittle strength in the brittle region. The tough strengths in 
both tough and brittle regions arc used to obtain the correlation and the 
g value. The brittle strengths are plotted for reference only, and are not 
used 
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the multiple connectivity required for the onset of tough 
behaviour, as discussed before. Therefore, these brittle 
data must not be used with the tough data for determining 
the critical exponent 9 since the fracture mechanisms are 
different. Instead, we must use the 'tough' strength, if 
yielding were to occur in this 'brittle' region, discussed 
below. 

A material may be considered to have both a brittle and 
a tough strength. In the brittle region, the brittle strength 
is weaker than the tough strength. This tough strength is 
equal to the strength that would be obtained if all the 
stress volumes were to yield in the absence of 
connectivity, i.e.: 

G'=G0~+ (8) 

where G' is the 'tough' strength in the brittle region, and 
Go the toughness when the stress volumes just pervade 
over the entire deformation zone. For the present system, 
we have G O = 10 ft lb/inch (i.e. 5.3 kJ m-2). The 'tough' 
strength in the brittle region is thus calculated by (8), and 
plotted in Fioure 6 as filled squares. Using the tough data 
in both the tough and brittle regions, we obtain by least 
squares: 

O = 0.45 -t- 0.06 (9) 

The fact that the data indeed obey the scaling law 
(equation (6)) further supports the concept of percolation 
for brittle-tough transition. 

The critical exponent 9 is for the brittle-tough 
transition. Thus, it may be termed a critical 'mechanical' 
exponent. Interestingly, 9 ("-~0.45) is practically equal to 
the critical 'geometrical' exponent fl (---0.44) found for 
classical percolation in three dimensions s. Our exponent 
O pertains to the toughness, which measures the 
dissipation of mechanical energy, and thus is a new 
mechanical exponent in percolation theory, not known 
before. 

Furthermore, it is known that 'transport' exponents 
are affected by the distribution (polydispersity) of 
connecting-bond length, although 'geometrical' 
exponents are not ~2. Thus, we might expect that the 
'mechanical' exponent 9 may also depend on particle 
polydispersity (or ligament length distribution). 

CONCLUSIONS 

The brittle-tough transition in polymer/rubber blends 
with pseudo-ductile matrices may be modelled as the 

percolation of matrix ligaments that are thinner than a 
critical value and in which a plane-strain to plane-stress 
transition and yielding take place. The onset of transition 
obeys an appropriate scaling law with a mechanical 
critical exponent 0---0.45, which is interestingly 
practically equal to the classical critical exponent fl -- 0.44 
in three dimensions. The percolation threshold varies 
with d/S, particle size polydispersity and shape 
asymmetry, such that the toughening efficiency is 
predicted to be greater with monodisperse and highly 
asymmetrical rubber particles (i.e. rods, platelets and 
webs) than with polydisperse and spherical ones. 
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Note added in proof 

Previously, Flexman 13 and Hobbs and coworkers 14 have 
also discussed impact fracture mechanisms of nylon/ 
rubber blends. More recently, Borggreve and 
coworkers 15 independently suggested that stress-state 
transition in the matrix phase may account for the 
observed critical interparticle distance. 
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